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Analytical Asymmetry Parameters for Symmetrical

Waveguide Junctions*
M. COHEN~ AND W. K. KAHN~

Summary—This paper presents a systematic approach to the
evaluation of (waveguide) junctions from the standpoint of their con-

formance to certain symmetries. Preferred sets of asymmetry param-

eters are found which are complete, miniial in number, which go

to zero when the junction represented is symmetrical, and wldch may

often be identified with a corresponding structural symmetry defect.
The asymmetry parameters are first introduced for general linear

junctions, but special attention is given to reciprocal and lossless

junctions. The derivation of these preferred sets is based on the
theory of group representations hitherto employed in the analysis of
ideally symmetric junctions. One of the applications of these preferred

parameters yields tirst-order relations among the defects of a nearly
perfect hybrid-T junction which are believed to be new.

I. INTRODUCTION

T

HIS PAPER presents a systematic approach to

the evaluation of waveguide junctions from the

standpoint of their conformance to certain sym-

metries. While ideal symmetrical junctions have re-

ceived extensive treatment in the recent literature, l-o
little account is taken, in these papers, of the fact that

all actual junctions are, in solme degree, asymmetrical.

On specialized consideration of a particular junction,

engineers have commonly improvised parameters de-

scriptive of junction asymmetries. It generally remained

uncertain whether or not such a set of asymmetry pa-

rameters, introduced ad hoc, was either complete (in the

sense that any arbitrary asymmetry could be described)

or minimal (in the sense that no linear relations sub-

sisted among elements of the set). Here, these questions

are resolved simply and, we believe, naturally in terms

of the same theoretical framework which has been suc-

cessfully employed in the analysis of ideal symmetrical

junctions; ie., the theory of linear transformations and

representations of finite point groups.
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A procedure is outlined whereby a preferred set of

asymmetry parameters may be derived for any junction

appropriate for description of the degree in which that

junction deviates from a given symmetry. The parame-

ters comprised in such a set are complete, minimal in

number, and all go to zero if, and only if, the junction

is symmetrical (or electrically equivalent to a junction

with the required symmetry). They are termed analyti-

cal asymmetry parameters because particular structural

symmetry defects may often be deduced from them.

First obtained for general linear junctions, special at-

tention is given to reciprocal and lossless junctions.

Scattering notation has been employed throughout this

paper for the network quantities since these are the

most convenient for microwave junctions, and moreover

they exist for arbitrary passive structures.

The principles by means of which the analytical

asymmetry parameters may be derived is sketched in

Section II. This sketch may largely be supplemented by

reference to the extensive treatments of ideal symmetri-

cal junctions previously cited. A detailed illustration

of the procedure is presented in Section III, in which

asymmetry parameters appropriate to the H-plane Y

junction are derived. This section should also clarify the

special case of symmetry degeneracy, which is slighted

in Section II for the sake of brevity.

The final section contains two examples illustrating

the measurement and theoretical significance of the

derived asymmetry parameters. The results of the per-

turbation calculation performed on a nearly perfect

hybrid-T are believed to be new.

II. SYMMETRY AND ASYMMETRY PARAMETERS

At any frequency the network characteristics of a

linear ~-port, equivalent to a particular junction (one

without ‘(noncontrolled” sources) at reference planes

appropriately chosen in perfectly conducting uniform

waveguide leads, may be described by iVZ complex pa-

rameters. The elements of the conventional (normalized,

voltage) scattering matrix,

.s’ = (Sij) i,j=l,2, . . ..N. (1)

constitute one such description. This matrix relates the

column matrices of terminaI quantities a and b;

the

b = Sa, (2)

elements of which,

a = (a;) and b = (b,) i=l,2. ... lV, (3))
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are, respective y, the rms phasors corresponding to the

waves incident onto and reflected from the junction at

the reference planes chosen. These phasors are so nor-

malized that a+a and b+b are, respectively, equal to the

power incident onto and the power reflected from the

junction. (The symbol a+ denotes the conjugate trans-

pose of a.) In this section, alternative (scattering) de-

scriptions will be developed, entirely equivalent in point

of generality to the conventional scattering matrix, but

especially appropriate to junctions conforming to par-

ticular symmetries. The N2 complex parameters enter-

ing into such a description fall into one of two categories:

1) those parameters which necessarily vanish when the

junction represented actually conforms to the particular

symmetries which determined the description; and 2)

the parameters which do not necessarily vanish in that

case. Those in the first category are denoted asymmetry

parameters, and those in the second, symmetry parame-

ters. The elements of the conventional scattering matrix

will be expressed (linearly) in terms of the asymmetry

and symmetry parameters, and conversely.

Consider a symmetrical structure such as, for exam-
ple, the waveguide j unction shown in Fig. 1. The physi-

cal symmetry of such a structure may be described in

terms of the operations, i.e., reflections and rotations,

which leave the structure invariant. These operations

form one representation of a group, the symmetry or

point group of the junction. The corresponding electrical

symmetry of the network equivalent to the junction

may be described in terms of the permutations of the

terminal quantities which leave the network relation

(2) invariant. The unitary matrices il!I~, which perform

these permutations of the terminal quantities a and b,
may be written down by inspection, and these then

form another representation of the mentioned group.

Thus,

and

if

b=Sa

a(k) = &fka, b(k) = Mkb = ~ksa,

(4)

(5)
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Fig. l—Symmetrical waveguide junction, IZ:plane Y. (Symmetry
planes marked F, rotational symmetries marked R.)

then

~(k) = ~a(k) (6)

for arbitrary a. When at’) and b(’) in (6) are replaced by

their equivalents in terms of a, there results:

iWJa = SM~a, (7)

which yields the essential connection between dfk and S,

h!fks = SMk. (8)

This connection may be utilized directly to find the

relations among the conventional scattering coefficients

that are a result of the symmetry to which fl’k corre-

sponds [Section III, (27)–(29)]. More to the purpose at

hand, (8) may also be utilized to find a transformation

which reduces the scattering matrix of a symmetrical

junction.

Since S and Mk commute, it is known that these two

matrices have a common set of invariant subspaces. T

But the permutation matrix M~ is simple in form and

is known (having been deduced from the geometrical

symmetry of the junction). Hence, invariant subspaces

of S will be found by finding the unique invariant sub-

spaces of M’, and from these a transformation will be

constructed which reduces S.

The eigenvectors ink($) belonging to the eigenvalues

~k(~) of Mk satisfy the IdatiOII

(~k – ~k(’))~~(i) = 0, ; =1,2,.... (9)

N linearly independent eigenvectors may be arranged

as a hermitean orthonormal set since Mk is unitary.

Assign consecutive superscripts to any repeated de-

generate eigenvalues. The subspaces spanned by all the

eigenvectors corresponding to any one value are the

unique invariant subspaces of .itfk. Then the trans-

formation,

T~ = (~k(1)~~(2) - . . ~k(N)), (lo)

formed with these eigenvectors as columns, is unitary;

i.e., ~–1 = T~. Acting on columns a~ and bk,

a = T~a.k, b = Tkbk ; (11)

T’ expresses a and b as linear combinations of the eigen-

vectors ??’tk(i). The column matrices &ik and b’ may be

regarded as new or transformed (incident and reflected

wave) terminal quantities. The transformed scattering

matrix sk corresponding to these new terminal quanti-

ties may be found on substitution for a and b in (2).

Tkbk = .!i’T@k, (12)

bh = Tk–l&?kak = Tk+ST.a., (13)

and comparing this result with the defining equation;

bk = Skak ; (14)

7 H. L. Hamburger and M. E. Grimshaw, **Linear Transforma-
tions in N-Dimensional Vector Space, ” Cambridge University
Press, Cambridge, England, ch. 23, p. 138; 1956.
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i.e.,

Sk = T/++.$Tk. (15)

The matrix sk has the form

where the shaded regions along the principal diagonal of

sk represent square submatrices. The elements of these

submatrices will be denoted Qij. Each submatrix corre-

sponds to an eigenvalue /-Lk of ~k; the dimension of the

submatrix is equal to the degeneracy of that eigenvalue.

The zeros in the remaining rectangles imply that the

elements in these submatrices of Sk are all necessarily

zero.

To recapitulate: if a junction actually possesses the

symmetry corresponding to ~k, then its scattering

matrix S commutes with ~k and the matrix .$k defined

in (15) necessarily y has the form (16). The elements Qij

then suffice to describe the junction.

Now consider an arbitrary waveguide junction. Its

scattering matrix S does not (necessarily) commute with

~k. If, nevertheless, Sk is defined by (15), sk is entirely

general in form with no elements (necessarily) equal to

zero. Retain the notation Qij for those elements with

subscripts ij for which it was introduced in the sym-

metrical case, and denote the remaining elements of

sk q;~. Then the q~j are precisely those scattering parame-

ters which necessarily vanish when the junction repre-

sented actually conforms to the particular symmetry

corresponding to .k.fk; i.e., the asymmetry parameters.

The Qij are the corresponding symmetry parameters.

The above theory may readily be extended to include

more complex symmetries to which several or a whole

group of matrices .Mk, k =1, 2, . . . correspond. An

example of the procedure may be found in Section III.
It was suggested in connection with (1 1)–(15) that

the matrix sk be regarded as an alternative or trans-

formed scattering description with terminal quantities

ah and bk. One way in which this viewpoint may be

made useful and, perhaps, more familiar, is by display-

ing the special forms that this matrix takes when the

junction represented is nondissipative and Lorentz re-

ciprocal; a second way is presented in the last section.

When a junction is nondissipative, the conventional

scattering matrix .S, descriptive of this junction, is uni-

tary. But,

Sk-l = (Tk+S~$l = ~k–ls-l(~k+)–l = Tk+S–lTk, (17)

Skw = (Tk~STk)~ = Tk~S+Tk, (18)

since Tk is unitary; hence, when S is unitary

Sk–l = sk~, (19)

or sk is also unitary.

When a junction is Lorentz reciprocal, the conven-

tional scattering matrix descriptive of this junction has

S=3. (20)

(~ denotes the transpose matrix of S.) Substituting for

S its expression in terms of sk:

TDk Th~ = T%+, (21)

or

(TkTk)sk = ~k(~kTk). (22)

When, in addition to being unitary, the transformation

Tk is real, then

Tk–l = ~k (23)

and (22) reduces to

sk = &, (24)

i.e., the same formal condition on sk as was imposed

on S.

The general theory of this section separates the Nz

independent parameters descriptive of a linear junction

into symmetry and asymmetry parameters. Stipulations

in addition to linearity regarding the physical character

of the junction, such as reciprocity and the conservation

of energy force relations among these parameters or,

alternatively phrased, reduce the number of parameters

which may be assigned arbitrarily. In the instance of

reciprocity, IV(N– 1) /2 linear constraints [(20), (22)

or (24) ] result, and for all the junctions treated, these

are so simple that no difficulty is encountered in select-

ing Nz – N(iV– 1)/2 = (N+l)N/2 independent parame-

ters. The nonlinear constraints (19) which result from

the conservation of energy are not automatically satis-

fied by the parameters. An illustration of how these

nonlinear constraints may be employed is given in the

last section.

II 1, ILLUSTRATIVE EXAMPLE

While the general principles by means of which aP-

propriate symmetry and asymmetry parameters may
be introduced for any junction were presented in the

preceding section, these will now be made concrete by

application to the H-plane Y junction shown in Fig. 1.

This junction constitutes the simplest example which

displays all the idiosyncrasies encountered in the most

general case.

The symmetry operations have been indicated by

marking the planes of reflection symmetry Fl, Fz, Fs,

respectively, and the 120°, 240° rotations by R1 and R2,

respectively. s The unitary matrices which perform per-

8Subsequently, the same notation will be employed for the
geometrical symmetry, the symmetry operation which leaves the
junction invariant, and the corresponding permutation matrix.
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mutations of the terminal quantities corresponding to

F1 and RI are

‘=[!!il ‘l=[i!ll ’25)

.Note that F12 = I and Rla = I.

The remaining matrices may be found from the two

given by matrix multiplication in accordance with the

multiplication Table A below.

TABLE A
—

.

\

Mf

z R, R2 F1 Fz FS

M,

I I R, R% \ F1 F, F3

RI R1 R, I ~ F2 Fs F1

R~ R, I RI : F3 F, F,

. . . . . . . . . . . . ------------ , ------------------------

FI F* Fa Ft :IR, R,

F, F, F1 Fs ~R, IR,

Fa F3 F, F, ~R,RII
—

This table is to be read:

M@f, = Mk,

where

ihfi = the ~th element of the first column,

iWi = the jth element of the first row,

(26)

.%l~= the element at the intersection of the ith row and

jth column.

Each entry in Table A may be verified by reference to

Fig. 1, where the effect of operation 4{{ followed by

operation Mj may be seen geometrically.

In the frequency range in which only one mode propa-

gates in each of the waveguide leads, the scattering

matrix S of the Y junction with respect to symmetri-

cally chosen reference planes, may be written:

( Sll S12 313

11

s = $21 S2Z $23 . (27)

Sal S32 S33

—.

which, on multiplying out, is seen to imply:

In order to find the symmetry and asymmetry pa-

rameters appropriate to FI, the transformation ~F1

must be constructed from eigenvectors fl(~) of F1. Ac-

cordingly, consider the eigenvalue problem:

The eigenvalues 01(’) are found as the roots of

det (Fl – q5J) = O = (~1 – I)(@l’ – 1), (31)

or

@lflJ = + 1, Olfz) = + 1, and 1#.1(3)= – 1.

Since qhfl) = 41(2), the eigenvalue problem is degenerate;

i.e., the invariant subspace belonging to the eigen-

value + 1 is two-dimensional. Many pairs of eigenvec-

tors which span the subspace belonging to the eigen-

value + 1 may be found. Perhaps the simplest ortho-

normal set is that given in Table B.

TABLE B

Eigenvalue I 41(1) = @(2) = + 1
I

+1(3) = – 1

— –1 l––––––—–

Corresponding

eigenvector(s)
“(’)=:~[:1 “(2)=111 “(’)=~~!:l

The transformation Trl constructed from these eigen-

vectors is

In accordance with (16), the matrix SF, = TF,+STF, h:~s

the form

I
all a12 o

SF, = ~21 @22 o , (33)

00 Q’33

provided that the Y Junction truly conforms to the

symmetry F~. Therefore, in general, SF1 = TFl+STFj is

given by

“1=[::!!:H ‘2(s12+s13)2s11 1’ ’34)
s2! + S32 + s23 + s3z @(sH + su) s22 — s33 + s32 — s23

<2(s,2 – S13)

S2Z — s33 + s23 — ~32 @!(S21 — S31) S22 + ’33 — ’23 — ’32

—

If the Y Junction truly conforms to the symmetry Fl, where the upper case @tj

we have from (8) : case a j; asymmetry,

FIS = SFI> (28) = TfllSF,TF~~ is given by

are symmetry and the lower

parameters, Inversely, S
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@(C%21 – a23) til(Ci21 – a23)

aJ
1

(III + G3 + a13 + a31 ChI — @33 — a18 + a31 . (35)

a3J ~11 – d33 + a13 – a31 CIII + @22 – a13 – a31 J

Returning to the eigenvalue problem: (30), an alterna-

tive set of orthonormal eigenvectors which will prove

useful subsequently is given in Table C.

TABLE C

Elgenvalues *1(1)= +,(2) = + 1 ~,(o = – 1

——— —.——I

Corresponding .

[

1 1, ~ 1 I_; &8,=~ :1

eigenvector(s) “(’) =73 : ]
f,(’a=m, _l

II
G _l

The transformation ~F1 now appears as

(36)

Corresponding (but different) symmetry and asymmetry

parameters may be introduced to parallel (33)-(35). -

In order to find the parameters appropriate to Rl, the

transformation TR, must be constructed from the eigen-

vectors rlfi) of RI. Accordingly, consider the eigenvalue

problem

(R, – p,(’) )r,(’) = o. (37)

The eigenvalues plft) are found as the roots of

det (1?, – PJ) = O = (P,3 – 1),

or

and

Since the three roots are distinct, the normalized eigen-

vectors are uniquely those given in Table D.

TABLE D

1
Eigenvalue I ~1(1) = 1

I————— ______

Corresponding 1
‘1

eigenvector “(1) = a :,

I

.——__— —________

The transformation TR, constructed from these eigen-

vectors is

[

111
1

TRl=~ 1 kzkll. (38)

1 kl k2 1

In accordance with (16), the transformed scattering

matrix SRI = TRl~STR1 has the form

‘Rl = O D22 O , (39)

provided that the Y junction truly conforms to the

symmetry R1. The general expressions for SRI and S in

terms of symmetry and asymmetry parameters are

listed in Table I(b).

When symmetries F1 and RI obtain simultaneously,

then the junction is perfectly symmetrical; i.e., when

FIS = SFI and RIS = SRI, (40)

then similar relations hold for Fz, F3, and Rz, for these

may be expressed in terms of F1 and RI; cf. ~ Table A.

In order to find the parameters appropriate to this sym-

metry, the transformation TF1%R,must be constructed.

Both eigenvalue problems (30) and (37) are in point

here since the scattering matrix of a perfectly symmet-

rical junction, by (40), must have a set of eigenvectors

in common with each F1 and RI. Comparison of the

eigenvectors in Tables C and D shows that while the

first eigenvectors of F1 and RI listed there agree, the

remaining two do not. Hence, the requirements imposed

by (40) on the eigenvectors of the scattering matrix of a

perfectly symmetrical junction may be satisfied only if

the eigenvalue problem

is degenerate. That the vectors ~lf2J, ~1(3) and r1(2), rl@)

span the same subspace follows from their orthogonality
(t. fl(l) =rl(l>). Hence, if the eigenvector sl<~) = ~l(i) = rl(l)

corresponds to U(l) then

is a necessary and sufficient condition on S to satisfy

(40). The eigenvectors corresponding to CW = U(O maY

then be chosen as ~l(z), ~l@); rl[z), r1(3); or any other linear

combination of these. Selecting the first of these alter-

natives, it follows that
.

TF1&R, = TF1,

and that for a perfectly symmetrical j UnCtiOIl,

SF,&R1 = TF,+&RISTF1&R1 has the form



1959 Cohen and Kahn: Analytical Asymmefry Parameters for Symmetrical Waveguide Juncfions 435

TABLE I

(a) SYMMETRICALNONRECIPROCALH-PLANE Y JUNCTIONF, SYMMETRYPLANE
-

!
1 0 o’

F] = 001

010

‘o & o’

T., = $ 101

1 0 -1,

02

F

A

I\\

\

o \
‘=.~

3 l\

I
.s11 S12 S13 ‘

!

2a22 Wcm’zl -1- a23) @(@21 – a23)

Natwal Basis s = % S22 s% ~ = ~ @&+ a&2) (all + & + a13 + a31) (till – @J88– @3 + a31)

1s31 &2 SW. %ZW’12 - a32) (all – @38+% – ~31) (@A1 + @88 – @3 – %1),

_——_—————__J ____. —_ —. ———.. —— —.———..————— ——

I

all @42 a18

1

(s22 + s,, + s,, + s,,) ti~(sz, + s81) (s22 – s38 + s32 – s,,)

Transjoivned Basis &71 = @l (h (328 ~F1 = ~ @(s12 + sl,) 2s1, @(sl, – s,,)

(asl a?2 6h8 ) (s22 – s38 + s23 – s32) @(s21 – S,,) (s22 + S,, – s23 – s,,) 1
——

(b) SYMMETIUCALNONRECIPROCALH-PLANE Y JUNCTIONR, ROTATIONALSYMMETRY
— --—-—— — ————.——.—.— —

I
001’

I

1 1 1’

R,= loo ~R, =j# kz kl

o 1 0, 1 kl kz,

?
0’ 2

Al

RI

o 0

\

3 I

Natural Basis

Transformed Basis

I
S1l S12 S1, ‘

S = s21 s22 s28

SaI Saz s38

_—— ———___—. ——— ——— ——

‘ 2DII d,, d,,

sR1 = dzz D22 d,,

dtl A 933

——.

——-. —

S,, = ~[~,, + ~,, + ~,,+ d,, + d,, + d,, + d28 + ~31 + &21

S12= + [ & + Qzkl + ~23k2 + kl(dlz + fhz) + kz(fb + d23) + dzl + d31]

SIX = ~ [% + ~22k9 + fD3tk1 + k1(d18 + d23) + kz(dn + d32) + d21 + d31 ]

sz, = ~ [% + Qzzk~ + 933h + k1(d31 + d32) + kZ(dZI + dz3) + dIZ + ‘B]

S22 = + [D, + D22 + ~32 + k,(dl, + d2, + d3,) + kz(d13 + dn + d3z) ]

S,3 = : [% + %k, + ~33k2 + k,(dlz + d21 + d3z) + k2(d1z + da + dn)]

s31 = : [% + GA+ D33k2 + k,(dz, + dz3) + Md31 + d32) + dlz + d13]

S,, = $ [% + Dz2kz + ~,,k, + k,(d,z + dz,) + k2(d13 + da) + d,, + du]

s,, == $ [% + 922+ Q33 + k1(d13 + dn + d3J + kz(d12 + d23 + d31) 1

% = i [S,, + s22 + s33 + S,, + s13 + s21 + s22 + s,, + s,,]
&Z= ~[S,, + Szzk, + Swk, + k,(S,z + S,3) -t- W&z + SW) + S21 + S31]

d,, = + [S,, + S2zk, + &Jk2 -i- k,(S,z + s,,) + kz(S1,+ Sx) + s21 + SSI]

d,, = ~[Su + S.uk, + S,,k, -t k,(S,, -t S23)-t- kz(S3,+ S32)+ C& + s,,1

fDz,= ~[S,, + S22 + s,, -t k,(Sn + SZI+ s32) + k(slz + s23 + s31) 1

dzz = ~ [Su + Smkg-1-Snk, + ki(S,, + M -1-k,(Sn + S,,) + S,s+ .%2]

d,, = : [S,, + Szzkz + s,,kl + k1(S31+ s32) i- kz(S,, + S,,) + s,z -t S,,1

& = ~[S1,-1-Sa,k,+ Sakz+ k,(S13+ s,,) + kz(Sui- sz,) + s23 + s32]

D33 = : [SII -t s22 + s33 + kl(slz + s23 + s31) + k2(s13 + SZI + sx) 1
——— ..— ..—
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H
&ll o 0

&l&R1 = o .s22 o , (43)

o 0 1%2

where a(l) and af2J = U(3) have been replaced, respectively,

by 811and&Z to conform to the notation of Section II.

The general expression for SF, & R, (for any three-

port) in terms of symmetry and asymmetry parameters

takes the form

‘ 811 elz

SF1&R1 = ezl E22 -E e22

, e31 e32

The asymmetry parameter ezz is

e13

1e23 . (44)

E22 – e22

required by the sym-

metry degeneracy. (More complex combinations of

symmetries in junctions with large numbers of ports are

more systematically handled by the apparatus of the

theory of group representations.)

It is unnecessary to repeat, in each case, for sym-

metries F2, F3 and Rz, discussions equivalent to those

just completed for F1 and RI. F1 and R1 constitute gen-

erators of the group, Table A, and hence the parameters

for the symmetries FZ and F3 may be obtained via, in

essence, a relabeling of the ports in Fig. 1. Since .& and

RZ commute, the results for SRI and SR, are identical.

The procedure may be formalized in terms of the sym-

metry matrices.

Assume that for some symmetry ~k, the eigenvalue

problem (9) has been solved; the transformation Tk,

(10), has been found, and the form of S,, (15), deter-

mined. From these, it is easy to obtain corresponding

results for a matrix &fz.

Mb = Mf–lMIMj. (45)

Substituting for ~k in (9), the expression (45) yields:

(M, – flk(’))M@k(’) = O. (46)

Thus, the eigenvalues of M’z are precisely those of ~k,

namely /.Lk(i), and the corresponding eigenvectors are

Mjm~f~). The transformation TI is therefore

Tl = ~~Tk, (47)

and the form of the transformed scattering matrix

Sl = Tt~STl = &fj+(Tk+sTk)~j

= ~j+skk.fj. (48)

To apply (48) for the purpose of finding the additional

matrices SFa and SF~ required to complete the treatment

of the symmetrical Y junction, the matrices F2 and F3

must be written in the form of (45) ; lkf~ may be either

F1 or R,. As maybe verified by employing Table A,

F1 = R1–~FzRl = Rx–lF~Rz. (49)

IV. APPLICATIONS

Preferred asymmetry parameters may be tabulated

for the several common types of waveguide junctions.

Convenient tabulations take the form of pairs of equal
matrices, comparison of which, element for element,

yields the asymmetry parameters in terms of the con-

ventional scattering parameters, and conversely.

Tables are assigned Roman numerals which corre-

spond to the type of symmetrical waveguide junction

considered. Within these principal divisions, according

to junction type, each particular symmetry, or com-

bination of symmetries, is distinguished by a letter

following the Roman numeral. Due to limitations of

space, only those tables required in the body of the

paper are given. On the extreme right is a drawing of a

common form of the type of waveguide junction con-

sidered. This drawing should be examined with care as

certain information in respect to circuit conventions

essential for the use of the tables is given only in this

form. First, the pertinent symmetry is indicated. Sec-

ond, the waveguide leads of the junction are distin-

guished by circled Arabic numerals; these numerals

correspond to the port designations in the equivalent

circuit for the junction. Third, reference or terminal

planes are indicated simply by truncating the waveguide

leads. The arrows across the terminal planes indicate

the assigned polarity.

The tables are divided into two columns. Consider the

column on the left designated “Natural Basis. ” The two

matrices in this column are both the conventional (nor-

malized voltage) scattering matrix for the junction S.

The upper matrix is essentially the definition of S= (S;j)

for the junction. If Sii = Sj~, reciprocity constraints have

been imposed. The lower matrix is the scattering matrix

written in terms of the preferred parameters. The lower

case letters are the asymmetry parameters. The remain-

ing parameters, upper case letters, are symmetry param-

eters.

Now consider the column on the right designated

“Transformed Basis.n The matrices in this column are

both related to the conventional scattering matrix by

the transformation TM (the subscript itf stands for the

pertinent symmetry in the particular table), i.e.,

SM = TM~ST~. (50]
:,.

The upper matrix is SM written in terms of the pre-

ferred parameters, while the lower matrix is S~ written

in terms of the elements of the conventional scattering

matrix.

Eq. (50) may be given a network interpretation.3 If

one defines a 2N-port with scattering matrix S{ TM},

then the N-ports represented by S and Ssl are related

as shown in Fig. 2. The tandem connection of S with

S{ TM], in accordance with the terminal markings in

Fig. 2, yield a network representation for SM. Note that

each line on the circuit diagram represents a waveguide

port or terminal ~air.

The symmetry and asymmetry parameters have a

variety of straightforward application S. These will be
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Fig. 2—Network representation of SM.

illustrated by two examples involving 1) a hybrid-T

junction, and 2) a short-slot directional coupler, both

frequently encountered in practice.

Consider a hybrid-T junction such as, for example,

shown in Table II. The asymmetry parameters for this

junction may be determined by measuring the elements

of the scattering matrix S= (Sij) and then substituting

in the second matrix listed in the second column,

1
a13 = — (S1l — S22) = reflection difference,

~

1
u14 = ~ (S14 — s!4) = H-arm balance depth,

42

aza = ‘= (s1s — sz3) = E-arm balance depth,
42

azl = S34 = E-H arm isolation.

However, Fig. 2 indicates how these asymmetry param-

eters might be measured directly provided the net-

work S{ TF}, Cf.(51),

[

o 0 0 011 1 0 0

0 00 0!0 Odz o

,oooo~bloo
1

,’1 o–1 O\() 000
,.

o~z? o 010 000 I

10 0 042:0 000 J

were available. The equivalent circuit of S { TF ], shown

in Fig. 3, consists of an ideal hybrid-T and two direct

connections, as may be verified by inspection. Thus, if a

suitable high-quality hybrid-T junction is available, the

asymmetry parameters of a second hybrid-T junction

may be measured directly by connecting these two as

required by the terminal markings for Fig. 2.

The four asymmetry parameters introduced to de-
scribe an arbitrary reciprocal hYbrid-T junction are all

linearly independent, However, if the hybrid-T j unction

is also Iossless, certain nonlinear relations are forced

among these parameters and the symmetry parameters

of the junction. Some interesting conclusions for nearly

symmetrical, nearly matched hybrid-T junctions may be

drawn from a simple perturbation calculation.

The condition that the junction be Iossless is that the

scattering matrix S or SF be unitary. Partition the

matrix SF;

( 4h ~12 ~ a13
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U14
\

cl12 tt22 i a23 a24
SF =

(

@II I aIII
————l———— =

)
———l_— __ , (53)

a13 a23 I Ct33 C134 aI II \ @II II

1 I
a14 a24 f 6t34 (1441

as shown in (53). Since the junction is nearly symmet-

Y’icaz, every element of al II is small. Neglecting squares

of small quantities, the unitary condition SFSF+ = I

yields:

(3, ,(%, +=1, (54a)

@JI II @JI 11+ = 1; (54b)

& 11 dl+ 1 + @ll 11@+ II = o, (55a)

~1 1 al* II + aI II @JII+II = o. (55b)

Eqs. (54a) and (54b) state that, to first order, the same

relations exist among the symmetry parameters of the

hybrid-T junction as would obtain if the junction were

perfectly symmetrical. In particular,

]a,,lz+ ]C?,2]2 =1, /@331’+ \@34/2==l;

Ia,ll = ]@221, la,, ] = ]@4, ]. (56)

From Table II, column 2, it maybe seen that

S33 = Gl and .&h = cl+, (57)

so that if the hybrid-T junction is nearly matched, G

and G4 are so small that squares of ] @~] 2 may be

neglected. (This also implies that, to first order,

\ @lzl 2= \ G*I 2=1.) Eqs. (55a) and (55b) then reduce to

til 11 U%* + @34~6k+ II = O) (58a)

(t12ua1* 11+ @ IIu@34* = o; (58b)

01
u=

()10”
(58c)

It follows directly from either (58a) or (58b) that

la~,] = [azdl and la~dl = [azsl. (59)

For a second example, consider a j unction with many

symmetries such as a (short-slot) directional coupler.

This junction may be asymmetric in many ways and

the analytical asymmetry parameters may aid in the

determination of where the symmetry defect lies. To

avoid the specialty of a purely numerical example, con-

sider that the scattering matrix of a coupler S = (S~i) has

been measured and was found to be (see Fig. 4)

( c@2 BP 7P’ ~P )

l~P -Y @p CYj

As compared to the somewhat more symmetrical 4-port

junction (see Fig. 5) considered in Table III, the short-

slot coupler cannot be expected to possess RI or Ff sym-

metry. However, it is pertinent to compute the asym-

metry parameters associated with FI, F2 and R2.
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TABLE 11

HYBRIDT JUNCTIONF SYMMETRYPLANE
.————. —

‘o 1 0 o’ ‘1 o 1 0

1000
F=

*=L 1 o–1 o
0010 @ o@2 o 0

,0 0 0 –1, o 0 042

‘& s,z SIa s,, ‘ ‘(G + a33+ 2U13)(an – a33) v’2(G2 + a2J @(Ct34 + a14)’

Natural Basis
~_ S,, &Z 323 .$4

s
~ (al, – w (C%U+ (7,33– 2aJ @Z(& – aJ – m(~34 – a,4)

.$3 &3 &3 S84 ‘= @(G2 + a93) @(@12 – a23) 2a22 2a24

,Sld S24 sa4 S,,a ,@(ct34 + al,) – v’$Z(C&– a14) 2a24 Z6?J,4

——.———— ——

((%1 CLlz U13 a14) ((SU+ s,, + 2s,2) @(s,3 + s,,) (s,, – s,,) VZKSM+ s,,) ]

ti12 C122 a23 a24

I

@(&3 + S23) z&,
Transformed Basis SF =

d%$13 - S23) zs3d

a13 a23 @33 C734 ‘p= * (Sn – .%2) @(&3 – 323)(S,, + 322– 2.%) @(.&4 – S2,)

.a~4 a,4 @34 (X44 VWM + &) 2Sa4 @(cfM4- S24) 2s,, ,

4/2:1 ●

k
+“

1
●

(2)

(51

u+
(3) (7)

~

Fix. 3—Equivalent circuit for S {~~ ] associated with the hybrid-T.

-k.4

Fig. 4—Symmetry of the coupler described by (60).

ql~,

–-+’––––––;-
-7>,/ \ \ 1( ‘

“=
3 /

/ ‘\
/ I \

/ \,/
/

\
,/ \

/
\

\/’ .I+l 4 \

F3

F, I F2

*

Fig. S—Symmetrical reciprocal H-plane four-port junction. F1, sym-
metry plane; Fz, symmetry plane; F3, symmetry plane; F4, sym-
metry plane; RI, rotational. symmetry; FL and RI symmetry
(implies all remaining operations in group); R,, rotational sym-
metry (applicable to short-slot coupler); F1 and Rz.,symmetry
(implies all remaining operations in subgroup for short-slot
coupler geometry).
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TABLE III

(a) SYMMETRICALH-PLANE FOUR-PORTJUNCTIONF, SYMMETRYPLANE

o /F I

n 2 ,/
(0 1 0 0) (1 o 1 0)

F1 =
1000 1 1 o–1 0]
0001 ‘F’ “ a o
0 0 1 0, 0

101
1 o–1

Naturai Basis

Transformed Bash

S1l .&Z & S14

IIs,, SKI S23 &4
s=

SM s23 s33 s34

S14 S24 S34 344

G C%2 a18 a14

II@d2 ~22 a23 a24
yF, *

a13 a23 &3 ~34

a14 a24 CL34C144

%__JIL@

T
/“

3 ,/ I

//04

‘(@41+L333+2a13) (all– a33) (@,,2+@34+a14+a2J (Ci&– C&4–a14+a,J
~=+ (G- a33) (C&+CtW- 2a13) (C%2–Ch4+a14–a23) (C&+Ct34–a,4–a23)

(G2+@44+a14+a23) (C%2–Ct34+a,4-a23) (G2+CL4+2a,4) (a,,– a44)
(@d2–@4-a14+a2J (Ct12+C%4-a,4-a23) (@22–CL) (@42+@44-2a24)

—

‘(s11+s22+2s12) (&+&4+s23+s24) (S,,‘s22) (s13–s14+s23–s2,)
(s18+s14+s2,+s24) (%+s,4+2s3,) (s,?–s,8+s1,–s,4) (s3,–s44)

‘F’= ~ (s,,-&,) (s1,+s14–s,,–s,,) (s,,+s22–2s1,) (s18–s14–s23+s24)

(s33+s28-s14‘s24) (s83–s44) (s13–s,3–s14+s,,) (s3,+s44–%84)

(b) SYMMETRICALH-PLANE FOUR-PORTJUNCTIONF3SYMMETRYPLANE
—

‘1 o 0 0$
0001

F3 =
0010
0 1 0 0,

/2000’
0011
0V200
o 0 1–1,

‘3—

~uq

‘S,, $2 SI, s14‘ ‘2G @(&+c14) 24% ti(f313 -614)

S,, 522 s23 s24 s=+ @((?13+614) (&+&+26,,) @(~,8+c,4) (~38–~,,)
Natural Basis s= .&a % SaaS34 24% @(~,8+C24) 2C?22 @(e23–G24)

,s14 s,, S84 S44 .V%~18–t14) (~,,– ~,,) ~(~23–@4) (~,,+~,,–z~,,) ,

‘Cll (% C13 C14

I I
2s11 2s,3 Vxsl,+sl.) 0(s,,–s,.)

cl? G e28 CL?4
Tran@rmcd Bm”s

2s12
SF, = sF, = ;

2s,8 V’X%+S34) @(s2,–s,4)

C18 C23 C38 c34 @(s12+$14) @(s23+s34) (s22+s44+%) (s22-s44)

.c14 c24 C34 e44 n(sl,–s14) ti(s23-s34) (s22–s44) (s22+s44–%24)
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TABLE III
(c) SYMMETRICALRECIPROCALH-PLANE FOUR-PORTJUNCTIONRfi ROTATIONALSYMMETRY(CONT’D)

-

[0010
\

~1 0-1 o\

R, =
‘0001

!

1 0101

1000 ‘R’ = a 1o1o

,0 1 0 0 .0 1 o–1 1

Natural Basis

Transjovmed Basis

v“ &L)

%, S,, S,S s14’

~= 51, 522 S23 524

SIS s23 s33 584

.s14 524 534 Sk

‘$1 %2 g,, g14‘

SE = Slz s,, g23 g2.4
2 g13 g23 fj’33 %

\g14 g24 $34 4ij44.

‘(S,1+S83–’%S) ($jl,-~34+g14-@3) ($hl–s33) (s12+s3rk?14–g23)‘

S=; (s12–s84+g14–d (%2+~44+2d (~12+s34+g14+g23) ($’22-s44)

(S,l–sd ($j12+S44+g14+g23)($j11+s3a+%3) ($12–S34–04-1%23)

,($jZ+$j’84-g14-g28) (s22-94) ($j’12-fj’34-g14+g23) ($j22+$j44-2g24)

‘(&1+s33+z&3) (51,+ 5,4+5,3+53,) (s33–&l) (&2-&4 +s23-&,)
, (&,+s2,+&4+s34) (s22+s44+%4) (&-&2-&4+s34) 622–544)

‘E= = z (s3,–s1,) (s2,–s14–s12+s34)(s11+s33–%,,) (s14–s12) /
,(s,2–s,,+s23–s34)(s22–s,4) (s14–s12) (&2+s44–%,4) 1

(d) SYMMETRICALH-PLANE FOUR-PORTJUNCTIONR, ROTATIONALSYMMETRY

IO O1OJ [1 j -1 -j~

Natural Basis

Tvansformd Bash

SII S,, s18 514‘
~= 512 5,2 5,8 524

S13 s2a 533 534

,s14 524 534 544

i% fs12 e13 e14‘

e12 822 e23 e24
Sk, = ~,

e23 E33 e34
,e14 e24 e34 &22,

S1l= ~[G + 233+ e24+ e42+ Xe,2 + e,3+ e14+ e23+ e32)+ 2&22]

S12= +[811 – 833– Xe24 – e42)+ (1 +.j) (e12– e23)+ (1 – j)(e14 – e32)]

513= [~ 811+ 833— (e24+ e42)+ ze18- 28221
S,4= *[8,1 – 838– j(e42– e24)+ (1 +j)(e,4 – e3J+ (1 – j) (e12– e23)l

S22==*[.% + &33– (e24+ e42)– j2(e14– ei2-1-e32– e23)– 2e13+ 2&22]

S28= *[SII – S33– j(e42– e24)+ (1 +j)(e32 – e14)-t- (1 - j)(e23 - e12)]

s24= [* .% + 833+ e24+ e42- 2e,4– 2&2z]

Sa3= *[&II + .S33+ e24+ e42+ 2(e,3– 4h – e,, – e23– e32)+ 2&22]

S34= * [&II – 1533-j(e24– e42)+ (1 + j) (e23– e12)-t- (1 – j) (e32- e12)]

S44==~[&u + &8a– (e24+ e42)- j2(e,2 – e14+ e,a – e32)- 2e13+ Z&,,]

&ll = ~[S,l + 522+ Saa+ S44+ 2(512+ S,a+ s14+ s23+ 524+ 534)]

en [= 1 SM– S33-j(S22 - S44)-1-(1 –j)(S12 –Sa4) + (1 +j)(S14 – S23)]

e,, = IISH + S3:- (S22+ S44)+ z(s13– S,,)]

e14= l[sII - s33-~(544 – 522)+(1 +j)(s12 – 534)+ (1 ‘j)(s14 – s23)]
&,, = * [s,, + s,, + 533+ s,, – 2(s1,+ 524)1

e23= I [&l —583—j(522 —&4) + (1 +j) (s23- &4) + (1 —j) (&34—SIZ)]
e24z %[SU+ S,a – (522+ S44)‘j2(&, – &4 - &z + Sza)+ 2(.$4 – S,a)]

1 [Sn — Saa- j(S44e32= ~ - 522)+(1 +j)(s34 - 512)+(1 -j) (S2a- S14)]
&a8= i[sll + 522+ s23+ s44+ i?(s18-512 – s14- s28+524 - .%4)]
e,2= ~[SU+ S88– (S22+ S44)- j2(S22- S23- SM+ S34)+ %%4- sdl
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Asymmetry parameters associated with Fl, Table

III(a):

a13 = *a(~2 — 1)

4Z14= +-@ + 1)

az3 = +~(~2 – 1)

(Z24= *a(~2 — 1). (61)

Asymmetry parameters associated with Fz:

b,3 = *a(p’ – 1)

b,, = – +-f(pt – 1)

b23 = *’y(p2 – 1)

b24 = – ;a(~2 – 1). (62)

Asymmetry parameters associated with Ra, Table

III(c):

g13 = g23 = g14 = g24 = o. (63)

Thus, the coupler, the scattering matrix of which had

the form (60), has a symmetry (or asymmetry) equiva-

lent to that shown in Fig. 4. For example, if

()

1
p = exp –j23r ~ , (64)

9

then the matrix (60) corresponds to that of a coupler

which is perfectly symmetrical except for lengths of guide

1 indicated in Fig. 4. The implications as regard dimen-

sional checks or compensating cuts to be made on the

component are evident.

Orthogonality Relationships for Waveguides and Cavities

with Inhomogeneous Anisotropic Media*

ALFRED T. VILLENEUVE~

Summary—A modfied reciprocity theorem forms the basis of de-
velopment of orthogonality relationships for modes in waveguides
and in cavities containing inhomogeneous, axdsotropic media. In the
lossless case certain of these may be interpreted in terms of power
flow and energy storage. The special case of magnetized gyrotropic
media is discussed for longitudinal and transverse magnetization.

INTRODUCTION

ECENTLY the use of anisotropic materials has

R
been the subject of numerous theoretical and ex-

perimental investigations. 1 Such materials are

characterized in their macroscopic behavior by tensor

permittivities or permeabilities. When these tensors are

unsymmetric, the media may be termed “nonreciprocal”

since the usual reciprocity theorem2 does not apply to

them. This nonreciprocal behavior finds applications in

such devices as circulators, gyrators, load isolators and

nonreciprocal phase shifters.3

One important special class of nonreciprocal media

is that known as gyrotropic media, wherein application

* Manuscript received by the PGMTT, March 10, 1959; revised
manuscript received April 18, 1959. This work was supported by the
Office of Ordnance Research, U. S. Army, Contract No. DA-30-115-
ORD-861.

t Hughes Res. and Dev. Lab., Culver City, Calif.
1 A complete list of references is impractical here and any attempt

at making specific references would be difficult. For extensive lists of
references the reader is referred to PROC. IRE, vol. 44, PP. 12’29-15 16;
October, 1956.

‘JS. A. Schelkunoff, ‘Electromagnetic Waves, ” D. Van Nostrand
Co., Inc., New York, N. Y., 1st cd., p. 478; 1943.

s C. L. Hogan, “The elements of non-reciprocal microwave de-
vices, ” PROC. lRI?, TW1.44, pp. 1345- 1368; October, 1956.

of a dc magnetic field causes the permittivity or per-

meability (hereafter referred to as constitutive param-

eters) to become an unsymmetric tensor. Two exam-

ples are gaseous plasma and ferromagnetic materials,

especially low loss, magnetically-saturated ferrites.

Although the usual reciprocity theorem is not valid,

a modified reciprocity theorem4 does apply to aniso-

tropic media. In this theorem, media characterized by

transposed tensor constitutive parameters are employed

in addition to the original media. In this paper, the mod-

ified reciprocity theorem forms a basis for the derivation

of orthogonality relationships for modes in waveguides

and cavities containing inhomogeneous, anisotropic

media.

Let us denote the general form of the constitutive

parameters in orthogonal coordinate systems as

In this notation the careted symbols, ~,i and jlij, are the

elements in the ~th row and jth column of the constitu-

tive parameter tensors for media characterized by the

transposes of the above tensors. These media shall be

referred to as “transposed media. ” In the case of gyro-

tropic media this has physical significance, since revers-

4 R. F. Barrington and A. T. Villeneuve, “Reciprocity y relation-
ships for gyrotropic media, ” IRE TRANS. ON MICROWAVE THEORY
.4xn TECHISIQ~TES.vol. MTr-6, pp .308–310: Julv, 1958.


