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Analytical Asymmetry Patameters for Symmetrical

Waveguide Junctions
M. COHEN{ anp W. K. KAHN}

Summary—This paper presents a systematic approach to the
evaluation of (waveguide) junctions from the standpoint of their con-
formance to certain symmetries. Preferred sets of asymmetry param-
eters are found which are complete, minimal in number, which go
to zero when the junction represented is symmetrical, and which may
often be identified with a corresponding structural symmetry defect.
The asymmetry parameters are first introduced for general linear
junctions, but special attention is given to reciprocal and lossless
junctions. The derivation of these preferred sets is based on the
theory of group representations hitherto employed in the analysis of
ideally symmetric junctions, One of the applications of these preferred
parameters yields first-order relations among the defects of a nearly
perfect hybrid-T junction which are believed to be new.

I. INTRODUCTION

HIS PAPER presents a systematic approach to

the evaluation of waveguide junctions from the

standpoint of their conformance to certain sym-
metries. While ideal symmetrical junctions have re-
ceived extensive treatment in the recent literature,—¢
little account is taken, in these papers, of the fact that
all actual junctions are, in some degree, asymmetrical.
On specialized consideration of a particular junction,
engineers have commonly improvised parameters de-
scriptive of junction asymmetries. It generally remained
uncertain whether or not such a set of asymmetry pa-
rameters, introduced ad hoc, was either complete (in the
sense that any arbitrary asymmetry could be described)
or minimal (in the sense that no linear relations sub-
sisted among elements of the set). Here, these questions
are resolved simply and, we believe, naturally in terms
of the same theoretical framework which has been suc-
cessfully employed in the analysis of ideal symmetrical
junctions; 4.e., the theory of linear transformations and
representations of finite point groups.
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A procedure is outlined whereby a preferred set of
asymmelry parameters may be derived for any junction
appropriate for description of the degree in which that
junction deviates from a given symmetry. The parame-
ters comprised in such a set are complete, minimal in
number, and all go to zero if, and only if, the junction
is symmetrical (or electrically equivalent to a junction
with the required symmetry). They are termed analyti-
cal asymmetry parameters because particular structural
symmetry defects may often be deduced from them.
First obtained for general linear junctions, special at-
tention is given to reciprocal and lossless junctions.
Scattering notation has been employed throughout this
paper for the network quantities since these are the
most convenient for microwave junctions, and moreover
they exist for arbitrary passive structures.

The principles by means of which the analytical
asymmetry parameters may be derived is sketched in
Section II. This sketch may largely be supplemented by
reference to the extensive treatments of ideal symmetri-
cal junctions previously cited. A detailed illustration
of the procedure is presented in Section III, in which
asymmetry parameters appropriate to the H-plane ¥V
junction are derived. This section should also clarify the
special case of symmetry degeneracy, which is slighted
in Section II for the sake of brevity.

The final section contains two examples illustrating
the measurement and theoretical significance of the
derived asymmetry parameters. The results of the per-
turbation calculation performed on a nearly perfect
hybrid-T are believed to be new.

II. SYMMETRY AND ASYMMETRY PARAMETERS

At any frequency the network characteristics of a
linear N-port, equivalent to a particular junction (one
without “noncontrolled” sources) at reference planes
appropriately chosen in perfectly conducting uniform
waveguide leads, may be described by N? complex pa-
rameters. The elements of the conventional (normalized,
voltage) scattering matrix,

S = (8:) t,j=1,2,---, N, €))
constitute one such description. This matrix relates the
column matrices of terminal quantities a and b;

b = Sa, 2)
the elements of which,

a=(a;) and b= (b,) N, (3
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are, respectively, the rms phasors corresponding to the
waves incident onto and reflected from the junction at
the reference planes chosen. These phasors are so nor-
malized that ata and b+b are, respectively, equal to the
power incident onto and the power reflected from the
junction. (The symbol a* denotes the conjugate trans-
pose of a.) In this section, alternative (scattering) de-
scriptions will be developed, entirely equivalent in point
of generality to the conventional scattering matrix, but
especially appropriate to junctions conforming to par-
ticular symmetries. The N? complex parameters enter-
ing into such a description fall into one of two categories:
1) those parameters which necessarily vanish when the
junction represented actually conforms to the particular
symmetries which determined the description; and 2)
the parameters which do not necessarily vanish in that
case. Those in the first category are denoted asymmetry
parameters, and those in the second, symmetry parame-
ters. The elements of the conventional scattering matrix
will be expressed (linearly) in terms of the asymmetry
and symmetry parameters, and conversely.

Consider a symmetrical structure such as, for exam-
ple, the waveguide junction shown in Fig. 1. The physi-
cal symmetry of such a structure may be described in
terms of the operations, i.e., reflections and rotations,
which leave the structure invariant. These operations
form one representation of a group, the symmetry or
point group of the junction. The corresponding electrical
symmetry of the network equivalent to the junction
may be described in terms of the permutations of the
terminal quantities which leave the network relation
(2) invariant. The unitary matrices My, which perform
these permutations of the terminal quantities a and b,
may be written down by inspection, and these then
form another representation of the mentioned group.
Thus, if

b = Sa 4

and

a® = Mka’

B® = Mb = MSa,

(5)

Fig.1—Symmetrical waveguide junction, H-plane Y. (Symmetry
planes marked F, rotational symmetries marked R.)
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then
BE) = Sa@®

(6)

for arbitrary a. When a® and b® in (6) are replaced by
their equivalents in terms of a, there results:

MkSa = SMka, (7)
which yields the essential connection between 17 and .S,
M;S = SM,. (8)

This connection may be utilized directly to find the
relations among the conventional scattering coefficients
that are a result of the symmetry to which Af; corre-
sponds [Section III, (27)-(29)]. More to the purpose at
hand, (8) may also be utilized to find a transformation
which reduces the scattering matrix of a symmetrical
junction.

Since S and M} commute, it is known that these two
matrices have a common set of invariant subspaces.’
But the permutation matrix M, is simple in form and
is known (having been deduced from the geometrical
symmetry of the junction). Hence, invariant subspaces
of S will be found by finding the unique invariant sub-
spaces of My, and from these a transformation will be
constructed which reduces S.

The eigenvectors m;(¥ belonging to the eigenvalues
i’ of My satisfy the relation

(M — )y = 0, 1=1,2,.--. (9)

N linearly independent eigenvectors may be arranged
as a hermitean orthonormal set since M} is unitary.
Assign consecutive superscripts to any repeated de-
generate eigenvalues. The subspaces spanned by all the
eigenvectors corresponding to any one value are the
unique invariant subspaces of M. Then the trans-
formation,

Ty = (m®Om,® « - - m@™), (10)

formed with these eigenvectors as columns, is unitary;
i.e., T'=T%*, Acting on columns a; and by,

a = Tkak, b = kak;

(11)

T expresses a and b as linear combinations of the eigen-
vectors m;{?. The column matrices ar and b, may be
regarded as new or transformed (incident and reflected
wave) terminal quantities. The transformed scattering
matrix .Sy corresponding to these new terminal quanti-
ties may be found on substitution for a and b in (2).

kak = STkak, (12)

br = T STrar = T0tSTra,, (13)

and comparing this result with the defining equation;
bk = Skak; (14)

7 H. L. Hamburger and M. E. Grimshaw, “Linear Transforma-
tions in N-Dimensional Vector Space,” Cambridge University
Press, Cambridge, England, ch. 23, p. 138; 1956.
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1.e.,
Si = TWtSTy. (15)
The matrix S; has the form
V.0
4
//// 0y - 40
0 7K
S = . . 7 . , (16)
ROEN/)
/

where the shaded regions along the principal diagonal of
Sk represent square submatrices. The elements of these
submatrices will be denoted @;;. Each submatrix corre-
sponds to an eigenvalue u: of My; the dimension of the
submatrix is equal to the degeneracy of that eigenvalue.
The zeros in the remaining rectangles imply that the
elements in these submatrices of Sk are all necessarily
zero.

To recapitulate: if a junction actually possesses the
symmetry corresponding to My, then its scattering
matrix S commutes with M} and the matrix .S, defined
in (15) necessarily has the form (16). The elements Q;;
then suffice to describe the junction.

Now consider an arbitrary waveguide junction. Its
scattering matrix S does not (necessarily) commute with
Mj. If, nevertheless, S is defined by (15), S is entirely
general in form with no elements (necessarily) equal to
zero. Retain the notation Q;; for those elements with
subscripts 4j for which it was introduced in the sym-
metrical case, and denote the remaining elements of
Sk ¢s;. Then the ¢i; are precisely those scattering parame-
ters which necessarily vanish when the junction repre-
sented actually conforms to the particular symmetry
corresponding to My; i.e., the asymmetry parameters.
The Q;; are the corresponding symmetry parameters.

The above theory may readily be extended to include
more complex symmetries to which several or a whole
group of matrices My, k=1, 2, - - - correspond. An
example of the procedure may be found in Section III.

It was suggested in connection with (11)-(15) that
the matrix Si be regarded as an alternative or trans-
formed scattering description with terminal quantities
a; and b;. One way in which this viewpoint may be
made useful and, perhaps, more familiar, is by display-
ing the special forms that this matrix takes when the
junction represented is nondissipative and Lorentz re-
ciprocal; a second way is presented in the last section.

When a junction is nondissipative, the conventional
scattering matrix .S, descriptive of this junction, is uni-
tary. But,

Syt = (Tk+STk)—" = T;;‘S“I(Tk“")“ = Tk+S_1Tk,
Sit = (TWHSTe)* = TetS+T,

(17
(18)
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since 7% is unitary; hence, when S is unitary

Syt = Sit, (19)

or Sy is also unitary.

When a junction is Lorentz reciprocal, the conven-
tional scattering matrix descriptive of this junction has
(20)

S =_S.

(S denotes the transpose matrix of .S.) Substituting for
S its expression in terms of Si:

TuSiTwt = TuSiTit, (21)
or
(T%T2)Sk = Sp(ToTy). (22)

When, in addition to being unitary, the transformation
Tk 1s real, then

Tyt = Tk (23)

and (22) reduces to

Se = Si, (24)

i.e., the same formal condition on S; as was imposed
on S.

The general theory of this section separates the N?
independent parameters descriptive of a linear junction
into symmetry and asymmetry parameters. Stipulations
in addition to linearity regarding the physical character
of the junction, such as reciprocity and the conservation
of energy force relations among these parameters or,
alternatively phrased, reduce the number of parameters
which may be assigned arbitrarily. In the instance of
reciprocity, N(N—1)/2 linear constraints [(20), (22)
or (24)] result, and for all the junctions treated, these
are so simple that no difficulty is encountered in select-
ing N*— N(N—1)/2=(N+1)N/2 independent parame-
ters. The nonlinear constraints (19) which result from
the conservation of energy are not automatically satis-
fied by the parameters. An illustration of how these
nonlinear constraints may be employed is given in the
last section.

I1I. JLLUSTRATIVE EXAMPLE

While the general principles by means of which ap-
propriate symmetry and asymmetry parameters may
be introduced for any junction were presented in the
preceding section, these will now be made concrete by
application to the H-plane Y junction shown in Fig. 1.
This junction constitutes the simplest example which
displays all the idiosyncrasies encountered in the most
general case.

The symmetry operations have been indicated by
marking the planes of reflection symmetry Fy, F,, Fj,
respectively, and the 120°, 240° rotations by R; and R,
respectively.® The unitary matrices which perform per-

® Subsequently, the same notation will be employed for the
geometrical symmetry, the symmetry operation which leaves the
junction invariant, and the corresponding permutation matrix.
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mutations of the terminal quantities corresponding to
Fiand R, are

1 00 00 1
Fi=]0 0 1|, R={100 (25)
01 0 010

Note that i?=17 and Rié=1.

The remaining matrices may be found from the two
given by matrix multiplication in accordance with the
multiplication Table A below.

TABLE A

I I R, R? Fy Fq F3
R R, R I F F; Fy
R, R, I Ry Fs Fa Fy
Fy Fy F Fy I R, R,
Fs F, F F; R I Re
Fy Fs F. 3 R R I

This table is to be read:

MM = M, (26)

where

M ;=the 7th element of the first column,

M ;=the jth element of the first row,

M, =the element at the intersection of the ¢th row and
jth column.

Each entry in Table A may be verified by reference to
Fig. 1, where the effect of operation M; followed by
operation M; may be seen geometrically.

In the frequency range in which only one mode propa-
gates in each of the waveguide leads, the scattering
matrix S of the ¥ junction with respect to symmetri-
cally chosen reference planes, may be written:

(811 812 8us

S = | 8 82 83 (27

831 832 833
Q11 Qiz a1z 820 + 832 + 823 + 832
Spy = | @1 Q22 @3 | = — V2(812 + 1)

a3 a3z Qs

Cohen and Kahn: Analytical Asymmetry Parameters for Symmeltrical Waveguide Junctions

S22 — 833 + S23 — B3

If the ¥ Junction truly conforms to the symmetry Fy,
we have from (8):

F1S = SFL; (28)

433

which, on multiplying out, is seen to imply:

S12 = 813, Sa1 = Sa1, S22 = 833, and 82z = Sz, (29)

In order to find the symmetry and asymmetry pa-
rameters appropriate to Fi, the transformation 7,
must be constructed from eigenvectors fi'? of Fi. Ac-
cordingly, consider the eigenvalue problem:

(Fr— ¢ H® =0, (30)
The eigenvalues ¢;(? are found as the roots of
det (Fy — ¢11) = 0= (¢ — D)(¢* — 1), (31)

or

o1 =+ 1, @ =+1, and ¢,® = — 1,

Since ¢V =¢:?, the eigenvalue problem is degenerate;
i.e., the invariant subspace belonging to the eigen-
value 41 is two-dimensional. Many pairs of eigenvec-
tors which span the subspace belonging to the eigen-
value +1 may be found. Perhaps the simplest ortho-
normal set is that given in Table B.

TABLE B
Eigenvalue ¢ = @ = 41 ’ @ = — 1
c & 0} 1 . 0
orresponding
O = |1 £, =0 £®=—_1 1
eigenvector(s) ! V2 N ! 0 ! NG .

The transformation I'r, constructed from these eigen-
vectors is

0 42 0
Tp,=—=|1 0 1 (32)
2
v 1 0 -1

In accordance with (16), the matrix Sg, = T, *STF, has
the form

Qi Rz O
Sk, = | Q@ Qa2 0|, (33)
0 0 Q@3

provided that the ¥ Junction truly conforms to the
symmetry Fi. Therefore, in general, Sp,=Tr,*STr, is
given by

V2(S21 + 831) 822 — 833 + 832 — Sas
2811 \/_2(812 — 813) s
V2(821 — 831) S22 + 833 — 823 — S5

(34)

where the upper case @®,; are symmetry and the lower
case @; asymmetry, parameters., Inversely, S
=T Sp,Tr* is given by
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Suu 812 83 2Qa2

831 832 833

These results are also listed in Table I(a).

Returning to the eigenvalue problem, (30}, an alterna-
tive set of orthonormal eigenvectors which will prove
useful subsequently is given in Table C.

TABLE C
Eigenvalues HD =@ = 41 H® = — 1
. 1 2 0
Corresponding f = 1 1] Ao = 1 [ 1| fo= 1 1 l
eigenvector(s) I 6 l V2 }
1) —1 -
The transformation T'r, now appears as
1 2
vZ V6
T ! ! ! (36)
"TIVE VB V2
1 1 1
V3 V6 V2

Corresponding (but different) symmetry and asymmetry
parameters may be introduced to parallel (33)-(35).
In order to find the parameters appropriate to Ry, the
transformation T, must be constructed from the eigen-
vectors 7Y of R;. Accordingly, consider the eigenvalue

problem
(R1 — p D)@ = 0, (37)

The eigenvalues pi¢? are found as the roots of

det (R; — pll) =0 = (p® — D),
or
1 43
pV =1 p® =k =~ —2“+ 5
and
1 3
p1®) = ky = __""'l/_.'
2j

Since the three roots are distinct, the normalized eigen-
vectors are uniquely those given in Table D.

TABLE D
Eigenvalue o =1 pi? = By n® = kb
1
Corresponding 1 ! 1 1 !
g W= 1 (1@ = by [ 1D = | by
eigenvector V3 /3 A3
1) k1 ke
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V2(Gx — asg)
(33)

The transformation Tr, constructed from these eigen-
vectors is

111
Tr=—s| 1 b b (38)
1 &k

In accordance with (16), the transformed scattering
matrix Sg,= Tr, STk, has the form

Dy O 0
SRz = 0 Dzz 0 5 (39)
0 0 Dy

provided that the ¥ junction truly conforms to the
symmetry R;. The general expressions for Sg, and S in
terms of symmetry and asymmetry parameters are
listed in Table I(b).

When symmetries F; and R; obtain simultaneously,
then the junction is perfectly symmetrical; <.e., when

FlS = SF1 and R1S = S.R1, (40)

then similar relations hold for F, F;, and Rs, for these
may be expressed in terms of F; and Ry; ¢f., Table A.
In order to find the parameters appropriate to this sym-
metry, the transformation T'r,«z, must be constructed.
Both eigenvalue problems (30) and (37) are in point
here since the scattering matrix of a perfectly symmet-
rical junction, by (40), must have a set of eigenvectors
in common with each F; and Ri.. Comparison of the
eigenvectors in Tables C and D shows that while the
first eigenvectors of F; and R; listed there agree, the
remaining two do not. Hence, the requirements imposed
by (40) on the eigenvectors of the scattering matrix of a
perfectly symmetrical junction may be satisfied only if
the eigenvalue problem

(S — ¢@Ds® = 0 (41)

is degenerate. That the vectors /®, £® and £7,®, £,®
span the same subspace follows from their orthogonality
(to A® =r;M). Hence, if the eigenvector s = {0 = p;®
corresponds to ¢V then

c® = g®

(42)

is a necessary and sufficient condition on S to satisfy
(40). The eigenvectors corresponding to ¢® =¢® may
then be chosen as /,®, £®; 12, 11®: or any other linear
combination of these. Selecting the first of these alter-
natives, it follows that

Trgr, = Tr,,

and that for a perfectly symmetrical
Sr&r,= TrTxr ST r,ar, has the form

junction,
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TABLE I
(a) SyMMETRICAL NONRECIPROCAL H-PLANE ¥ JUNCTION Fi SYMMETRY PLANE

O 2
1 0 0vZ 0 Fis
1 ~
Fr=310 0 Trp=—1 0 1 ~
0 1 V2 1 0 -1 o O
3 N
[Sn Sz &3 2@ V2(Qa + az) V2(@n — az)
Natural Basis = 181 8 Su =3V2(Qu+ ) (Qu+ Qs+ ais+as) (Qu — Qs — a1s + aa1)
Sa iz Sm VZ2(Qz — az) (Qu — Qs+ a — an)  (Qu + Qss — 15 — ag)
Qu Gz o (Sez + a3 + Sas + Ss2) V28 + 8s1)  (Sez — Sss + Ss2 — Sa)
Transformed Basis Sp, = {Qy Gn a0 Sr, = 3 V281 + Si3) 28u V2(812 — Su3)
g a2 Qs (822 — Sss -+ Sos — Ss2) V28 — 8ar)  (Se2 + Sz — 82 — S2)

(b) SYMMETRICAL NONRECIPROCAL H-PLANE ¥ JUNCTION R; ROTATIONAL SYMMETRY

1 1t 1

0 0 1 R,
R=11 0 0 T, ==——%x|1 k h
0o 1 0 1 kb ke
0 O
~
3 |
Su = 3 Du + Doz + Dz + die + dus + dox + dos + dan + 2]
S12 = [ Du + Dby + Dasks + kr(dre + dso) + ka(dis + doa) + dox + da1)
Siz = 3[Du + Doaske + Dok + Fa(dis + dos) + keldiz + deo) +dn + 1]
Su Sz Sis Sor = }[Du + Duke + Dsshy + ka(dsr + diz) + kaldnn + dzs) + die + dls]
Naiural Basis = 8 8 S 8oz = 3[Du + Doz + Dz + Aildrz + dos + da)) + keldis + dn + ds2)]
Sat Ss S Su = 3[Du + Duks + Duks + ku(dis + dar + das) + Fo(daz - dog + du)]
S = [ Du + Dok + Daske + kalder + ds) 4 koldar + da2) + di2 + dis]
Ss2 = 3D + Dasks + Duks + kaldie + dn) + koldis + don) + don + dsz]
Sz = 3 Du + Do+ Dz + Fuldis + don + ds) + koldiz + dos + dn)]
Dy = 3[8u + 822+ Sss + Sz + S1a + Sa1 + 8oz + Sat +- 8s2)
dig = %[Su + Spaks + Sssky + Fa (813 + Sus) + k2(512 + 532) +8n+ 831]
dis = 3[Su + Suoks + Ssskz + Eu(S12 + Ss2) + ke(S1z 4 So5) + Sz Sul
Du die  dis du = 3[Su + Saokr + Sssks + 21(Sa1 + Sea) + £2(8a + Sor) + Sie + Sis)
Transformed Basis = ldy D dn Dz = 3[811 + Soz + S5 + £S5 -+ Sa1 + S12) + £2(S12 + Soa + Sun) ]
dy  d Dl doz = E[Sn -+ Sosko + Sasks 4 B1(Sse + Sex) + B2(S1s + 8a1) + 8 - Saz)
day = 1[Su + Soks + Sasky + £1(Ss1 + Ss2) + 228z + S25) + Sz + Sis)
das = 3[Su + Sg2kr + Suske + F1(Sis + Sa1) + k2 (S1z + Sn) + S 8a2]
D = 3[Su + So2 + Sas + A1 (S12 + Sz + Sa) + #2(Sas + Su + Soa) ]
k1=“‘"2"+ kz“"%“lz/‘jg
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&an 0 O
Spgr, = | 0 82 0 |, (43)
0 0 &

where ¢» and ¢® =¢® have beenreplaced, respectively,
by &1 and & to conform to the notation of Section II.

The general expression for Sy, & r, (for any three-
port) in terms of symmetry and asymmetry parameters
takes the form

&u €12 €13
Sr&r, = | ea1 82+ ea €23 (44)
€31 32 Ea2 — €29

The asymmetry parameter e is required by the sym-
metry degeneracy. (More complex combinations of
symmetries in junctions with large numbers of ports are
more systematically handled by the apparatus of the
theory of group representations.)

It is unnecessary to repeat, in each case, for sym-
metries Fo, F3 and R,, discussions equivalent to those
just completed for F; and Ri. F and R; constitute gen-
erators of the group, Table A, and hence the parameters
for the symmetries F, and F; may be obtained via, in
essence, a relabeling of the ports in Fig. 1. Since Ry and
R, commute, the results for Sg, and Sk, are identical.
The procedure may be formalized in terms of the sym-
metry matrices.

Assume that for some symmetry My, the eigenvalue
problem (9) has been solved; the transformation T%,
(10), has been found, and the form of Si, (15), deter-
mined. From these, it is easy to obtain corresponding
results for a matrix M.

My = MMM, (45)

Substituting for My in (9), the expression (45) yields:
(M; — m") Mm@ = 0. (46)

Thus, the eigenvalues of M, are precisely those of M,

namely px®, and the corresponding eigenvectors are
M,m;®, The transformation T is therefore

Ty = M;Ty, (47)
and the form of the transformed scattering matrix
Sy = THST: = MHTHST)M;
= M*S:M;. (48)

To apply (48) for the purpose of finding the additional
matrices S#, and Sy, required to complete the treatment
of the symmetrical Y junction, the matrices F; and Fj
must be written in the form of (45); M may be either
Fyor Ry. As may be verified by employing Table A,

F, = R1_1F2R1 = R2_1F3R2. (49)

IV. APPLICATIONS

Preferred asymmetry parameters may be tabulated
for the several common types of waveguide junctions.
Convenient tabulations take the form of pairs of equal
matrices, comparison of which, element for element,
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yields the asymmetry parameters in terms of the con-
ventional scattering parameters, and conversely.

Tables are assigned Roman numerals which corre-
spond to the type of symmetrical waveguide junction
considered. Within these principal divisions, according
to junction type, each particular symmetry, or com-
bination of symmetries, is distinguished by a letter
following the Roman numeral. Due to limitations of
space, only those tables required in the body of the
paper are given. On the extreme right is a drawing of a
common form of the type of waveguide junction con-
sidered. This drawing should be examined with care as
certain information in respect to circuit conventions
essential for the use of the tables is given only in this
form. First, the pertinent symmetry is indicated. Sec-
ond, the waveguide leads of the junction are distin-
guished by circled Arabic numerals; these numerals
correspond to the port designations in the equivalent
circuit for the junction. Third, reference or terminal
planes are indicated simply by truncating the waveguide
leads. The arrows across the terminal planes indicate
the assigned polarity.

The tables are divided into two columns. Consider the
column on the left designated “Natural Basis.” The two
matrices in this column are both the conventional (nor-
malized voltage) scattering matrix for the junction S.
The upper matrix is essentially the definition of S=(8;;)
for the junction. If §;;=S§;;, reciprocity constraints have
been imposed. The lower matrix is the scattering matrix
written in terms of the preferred parameters. The lower
case letters are the asymmetry parameters. The remain-
ing parameters, upper case letters, are symmetry param-
eters.

Now consider the column on the right designated
“Transformed Basis.” The matrices in this column are
both related to the conventional scattering matrix by
the transformation Ty (the subscript M stands for the
pertinent symmetry in the particular table), .e.,

Sy = Ta*STu. (50)

The upper matrix is Sy written in terms of the pre-
ferred parameters, while the lower matrix is Sy written
in terms of the elements of the conventional scattering
matrix.

Eq. (50) may be given a network interpretation.® If
one defines a 2 N-port with scattering matrix S{ TM} ,

, (5D

then the N-ports represented by S and Sy are related
as shown in Fig. 2. The tandem connection of .S with
S { TM}, in accordance with the terminal markings in
Fig. 2, yield a network representation for Sy. Note that
each line on the circuit diagram represents a waveguide
port or terminal pair.

The symmetry and asymmetry parameters have a
variety of straightforward applications. These will be
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! N+1 : i matrix Sr;
2 N+2 2 @
‘__—:— S{TM} : } ; 5 [ @11 Qi i 213 14
| | i Qs Qo2 | Qa3 axn Gir |
¢13 @23 { @3 M3 arrr | Quu
N ~ - Qs 21 | QRas Qu
Swm

Fig. 2—Network representation of Sa.

illustrated by two examples involving 1) a hybrid-T
junction, and 2) a short-slot directional coupler, both
frequently encountered in practice.

Consider a hybrid-T junction such as, for example,
shown in Table II. The asymmetry parameters for this
junction may be determined by measuring the elements
of the scattering matrix S=(8;;) and then substituting
in the second matrix listed in the second column,

iy = (813 — 8a2) = reflection difference,

&

1
Gy = 75 (814 — S24) = H-arm balance depth,

1
Qs = Vﬁ (813 — 823) = E-arm balance depth,

@2 = 834 = E-H arm isolation.

However, Fig. 2 indicates how these asymmetry param-
eters might be measured directly provided the net-
work S{ Tr}, cf. (51),

"0 0 0 0 | L 1t 0 07
0 0 0 010 042 0
0 0 0 011—1 0 0
sz = L]0 0 0 040 0 0v2l
VvZi1 0 1 010 0 0 O
1 0-1 010 0 0 0
0+v2 0 070 0 0 O
L0 0 042 : 0 0o 0 ol

were available. The equivalent circuit of S{7r}, shown
in Fig. 3, consists of an ideal hybrid-T and two direct
connections, as may be verified by inspection. Thus, if a
suitable high-quality hybrid-T junction is available, the
asymmetry parameters of a second hybrid-T junction
may be measured directly by connecting these two as
required by the terminal markings for Fig. 2.

The four asymmetry parameters introduced to de-
acribe an arbitrary reciprocal hybrid-T junction are all
linearly independent. However, if the hybrid-T junction
is also lossless, certain nonlinear relations are forced
among these parameters and the symmetry parameters
of the junction. Some interesting conclusions for nearly
symmetrical, nearly matched hybrid-T junctions may be
drawn from a simple perturbation calculation.

The condition that the junction be lossless is that the
scattering matrix .S or Sp be unitary. Partition the

as shown in (53). Since the junction is nearly symmet-
rical, every element of a1 11 is small. Neglecting squares
of small quantities, the unitary condition SpSpt=17
yields:

@11 @it = 1, (54a)

Gnn Quit = I; (54b)

G Grt1 + Gmm ot = 0, (55a)
Grrar*u+ e Qut o = 0. (55b)

Eqgs. (54a) and (54b) state that, to first order, the same
relations exist among the symmetry parameters of the
hybrid-T junction as would obtain if the junction were
perfectly symmetrical. In particular,

|@ult+ | ael=1, |@s[*+ |[aul*=1;

| @ul| = | @unl, | G| = | Gui] . (56)
From Table II, column 2, it may be seen that
833 = Qg2 and 844 = Guy, (37

so that if the hybrid-T junction is nearly matched, Qo
and @y are so small that squares of ]@,-,—[2 may be

neglected. (This also implies that, to first order,
| G| 2= | @ae| 2=1.) Eqs. (55a) and (55b) then reduce to
dru UGw* + GulUartn = 0, (58a)
GrUar* u + aerulUQGy™ = 0; (58b)
U (O 1) (58c)
“\1 o) ©

It follows directly from either (58a) or (58b) that
I (llgl = l (124| and l (114| = | dzgl . (59)

For a second example, consider a junction with many
symmetries such as a (short-slot) directional coupler.
This junction may be asymmetric in many ways and
the analytical asymmetry parameters may aid in the
determination of where the symmetry defect lies. To
avoid the specialty of a purely numerical example, con-
sider that the scattering matrix of a coupler S=(8;;) has
been measured and was found to be (see Fig. 4)

ap® Bp vp* P
Bp a op v
S = (8,;) = . 60
(8 Vst op apt B P. (60)
8p v Bp a)

As compared to the somewhat more symmetrical 4-port
junction (see Fig. 5) considered in Table ITI, the short-
slot coupler cannot be expected to possess R; or Fssym-
metry. However, it is pertinent to compute the asym-
metry parameters associated with Fy, Fy and R..
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TABLE 11

Hysrib T JuncrioNn F SYMMETRY PLANE

0O 1 0 0 1 0 1 0O
1 0 0 0 1t 0-1 0 \
F= T=—
0 0 1 0 Vo2 0 0
0 ¢ 0 -1 0 0 042 ’4
NN~
S8u 8 S Su (G + Qe+ 2a15) (A — Qss) V2@ + a2)  V2(Qss + a10)
Natural Basis S = 812 Sz S Su S=1 (@u - ass) (@Qn+ Qe — 2013) \/7(@12 — ag) — \/2(@34 — 1)
815 8 Si S V2(Cu + az) VZ2(Qre — a2) 22 2a
Su 8 S Su V2(Qa t ar) — V2(Qu — G1) 282 2Qu
Qu Qi @s au Su 4 8+ 281) V2815 + 8) Bu — 822) V28w + Sua)
Transformed Basis Sp= Q2 Rez @z o Sp=1 V2(8iz + 8s3) 283 V2815 — 83) 28
ay  an Qs Qu B —8Su) V28— Su) (Su + 8oz — 2812) VZ2(S1s — S2a)
au  aa Qe QG v/2(81 4 8an) 28 V28w — 8u) 284

®

@ 1

|
L

L

Fig. 4—Symmetry of the coupler described by (60).

|

|

| _—
— _— I .

l

Fa

Fig. 5—Symmetrical reciprocal H-plane four-port junction. F, sym-
metry plane; F, symmetry plane; F;, symmetry plane; Fi, sym-
metry plane; Ri, rotational symmetry; Fi and R, symmetry
(implies all remaining operations in group); R, rotational sym-
metry (applicable to short-slot coupler); Fi and R;, symmetry
(implies all remaining operations in subgroup for short-slot
coupler geometry).
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F
ol
O] — 2
0 1 0 O 1t 0 1 0 / /
Aot 000 pe oo Lt 01 0 0] o
"0 0 0o 1 nEYZ0 1 0 1 [ /s 1
0o 0 1 0 0 1 0-1 3 % |
s
Y 4 o+— 4
Su 812 Sz Su (Gu+Css+2015) (Cu—GCs3) (Quo+Qsit-autas) (Qu— Qau—autas)
Natural Basis S = Sz 82 8n Su 5=3 (G — Css) (Qu+tQss— 2a.3) (Que—QasFau—as) (Qut Qa— 14— ags)
81z Siz Sz Su (GrotQuut-014+025)  (Cro— RssF-016—23)  (Raa+Quat-2a10) (Qas— Qas)
S1e Su Sse Su (Qro— Qau—au+a2) (ot Qu—ou—axn) (Rzp— Qu) (Rag+ Qs —2a24)
Gu Gu o ou (Su+822-1-2845) (S13+-8u+-8o+82s)  (Sur—82) (S15—S1e+825—820)
Transformed Basis | Su, = Gr Qn an o Sp.= (Sus+81u+-Ses+821)  (Sss+Sau+283s) (813823 +814—82s)  (S35—Sua)
i a ez Qn Qu h (811 —8s9) (S13+-81—8u—82)  (SutS:2—28:) (S15— 14— Sus+82e)
ay ou @ Qu (Sra+82s—S1a—82e) (S35 —8us) (815~ 8os—8u+82s)  (Ss3+84—2834)
(b) SyMMETRICAL H-PLANE FOUR-PORT JUNCTION F; SYMMETRY PLANE
Or—2
1 0 0 0 W2 0 0 0 O o
0o 0 0 1 _tj0 0o 1 1 F.__ —_— _F
B=1 0 1 0 =7 ovz 0 o 3— - ———"3
01 0 0 0 0 1-1 3 !
oLt
Su Sz S5 Su 2Cn V2(Cutc1) 2Cy, vV2(Crz—cu)
N ! Basi 5= S 82 Sz Sm S=% VZ2(Cuteu) (CotCut2cs) +V2(Costcar) (Caz—Cul)
atural Basts T 85 Su Si Sk 2C:. V2(Cos+-624) 2Cy VZ2(Cos—c24)
S Su Su Su VZ2(Cu—cw) (Ciu—Cu) VZ2(Cos—cu) (Co+Cu—2Cy,)
Cui Cu Ci ou 28n 281 V2 (8124+8140) V2(812—81s)
Basi Sp. = Cu Cu» Cx cu Sp=1 2813 283 V2(82s+8as) V2823 —8s1)
Transformed Basis "= e @ Cu ow P V260t VIGutS)  SutSut2%) (Su—Sw
14 Caq O3 Cu \/2(512"514) ‘\/2(523"534) (822—544) (522+544—2§24)
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TarLe 111
(c) SYMMETRICAL RECIPROCAL H-PLANE FOUR-PORT JUNCTION R; ROTATIONAL SYMMETRY (CONT'D)
Or2
l[0 0 1 0‘ ‘1 0 -1 01{ RZ //
o0 0 01 S N © Q
1t o 0 o0 BTV 0 1 0 [
g 1 0 0 0o 1 0-1 3 / !
/
o4
Su Sz S S1a (811+933—2g13) (812—934+g14—g23) (811—933) (912+934—g14—gza)
R S12 S22 S Sm (Gre—Goatguu—ges)  (Goat-Gaat-2g00) (Gra+-Gaatgutges)  (Goa—Gue)
Natural B S = S=1
ahirat Basts 81z Sz 8 Sw 2 (Gu—Ga) Grot+Gaatguutg)  (GutGat2gnm) (Gr2—Ga—gutgu)
Su S Su Su Gt Gau—gu—gn) (Ge—Gu) Gre—Gau—gutges)  (GootGuu—2g%)
Gun Gu gz g (Su+8s3+281s) (SB12+8144-82s+830) (83— 81) (S12—S14+825— S34)
. Gz G2 g g (SrotSas+Su+8s0)  (Seot-8us+2820) (S3s—812—81u+830)  (S22—8u)
T d B Sg, = Sp. =1
ransformed Basis R g5 83 G Ga fa 3 (833—8m) (S25—S1a—S1o+8:1) (S8 —281a) S1—8u2)
gu gu G Gu (Siz—81+825—8s1)  (Sez—Sae) (814—8i2) (82814 —2824)
(d) SyMMETRICAL H-PLANE FOUR-PORT JUNCTION R; ROTATIONAL SYMMETRY
i 2N
</O — 2
N /
0o 0 0 1 i1 1 1 /
et 000 S A O\\ o
T 1 0 0 BT -1 11 l
0O 0 1 0 1t 7 -1 —j
3 / \ |
4 \
g \
4 O — 4 N
Su = %[811 A Ess + ean + exo + 2enn + €13 + 14 + €03 -+ €20) + 2822]
Sz = }[Bu — 8 — jleas — €a) + (1 + f)(ese ~ e2s) + (1 — f){ens — )]
Sis = {8 + & — (eas + en) + 2o — 28]
S S S Su S = $[8n — & — jlew — €2) + (1 + ) {ere ~ ex2) + (1 — ) (e — e25)]
Natural Basis S = 812 822 823 824 522 = %[811 + 833 - (624 + 842) ot j2(e14 — €12 + €32 — 623) — 2g13 + 2822]
S 8 S Su Sus = 3[8u — &1 — jlew — 20 + (1 + 7)(ew ~ es) + (1 — j)(es — )]
Su Su Su Su So = 3[8u + & + e + e — 26 — 28a]
Sas = 3[8u + Ess + €24 + €sz + 2(6n — 1z — €14 — €23 — e52) - 28]}
Sae = 1[Bu — 8 — jleaw — ) + (1 4 ) ez — ex) + (1 — ) (es2 — exa)]
Su = 3[8u + Ex — (eas + 12) ~ j2(e12 — 14 + €23 — €33) — 2e1s + 28]
&u = ‘i‘[ 11+ Sa2 + Saz + Su + 2(812 + 81z + Su -+ S5 + 8Ses -+ 534)]
a2 = }[Su — 8os — (80 — 810) + (1 — /) (B2 —~8u) + (1 +7)Sue — Su3) ]
e = 3[Su + S — (S22 + Su) + 2(81s — S29)]
8n e e eu e1s = 3[Su — 835~ 781 — S22) + (1 + ) (S12 — S5) + (1 — ) (S1a — S2s) ]
Transformed Basis Se, = o B on ox En = %[Su ot S o+ Su = 28u + 824)]
e; € Om e e = }{Su — S5 — (S22 — Su) + (1 +7) (825 — Su0) + 1~ ) (Su— 8]
eu 6y eu Oxn 2 = 3[Su + Sus — (So2 + Sus) — 72(S14 — o1 — S12 + Ses) + 2(82s — 81a)|
ear = }[Su — Sus ~ j(Su — 822) + (1 + N Sss ~ S12) + (1 — 1) (S — Sw)]
853 = 3[Su + S22 + Sus + Sus + 2(S1s — S1z — S — S + 8a¢ — San)]

ez = }[8u + S — (S22 + Su) ~ 72(812 — 8o — Suu + Su) + 2(8u — Su) ]
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Asymmetry parameters associated with Fy, Table

1II(a):
a13 = Fa(p? — 1)
o= 3v(p*+ 1)
azs = 3y(p? — 1)

az = 3a(p® — 1). (61)
Asymmetry parameters associated with Fy:

bis = 3a(p* — 1)

b= —3v(p*— 1)

oy = 3v(p* — 1)

ba = — Fa(p* — 1). (62)
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Asymmetry parameters associated with R,, Table
11I(c):

g13= a3z = guu = gu = 0. (63)

Thus, the coupler, the scattering matrix of which had
the form (60), has a symmetry (or asymmetry) equiva-
lent to that shown in Fig. 4. For example, if

!
= exp | —j2r —
? p( ]T)\g>,

then the matrix (60) corresponds to that of a coupler
which is perfectly symmetrical except for lengths of guide
! indicated in Fig. 4. The implications as regard dimen-
sional checks or compensating cuts to be made on the
component are evident.

(64)

Orthogonality Relationships for Waveguides and Cavities
with Inhomogeneous Anisotropic Media*
ALFRED T. VILLENEUVE{

Summary—A modified reciprocity theorem forms the basis of de-
velopment of orthogonality relationships for modes in waveguides
and in cavities containing inhomogeneous, anisotropic media. In the
lossless case certain of these may be interpreted in terms of power
flow and energy storage. The special case of magnetized gyrotropic
media is discussed for longitudinal and transverse magnetization.

INTRODUCTION

ECENTLY the use of anisotropic materials has
R been the subject of numerous theoretical and ex-
perimental investigations.! Such materials are
characterized in their macroscopic behavior by tensor
permittivities or permeabilities. When these tensors are
unsymmetric, the media may be termed “nonreciprocal”
since the usual reciprocity theorem? does not apply to
them. This nonreciprocal behavior finds applications in
such devices as circulators, gyrators, load isolators and
nonreciprocal phase shifters.?
One important special class of nonreciprocal media
is that known as gyrotropic media, wherein application

* Manuscript received by the PGMTT, March 10, 1959; revised
manuscript received April 18, 1059, This work was supported by the
Office of Ordnance Research, U. S. Army, Contract No. DA-30-115-
ORD-861.

+ Hughes Res. and Dev. Lab., Culver City, Calif.

1 A complete list of references is impractical here and any attempt
at making specific references would be difficult. For extensive lists of
references the reader is referred to Proc. IRE, vol. 44, pp. 1229-1516;
October, 1956.

2 S, A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Co., Inc., New York, N. Y., 1st ed., p. 478; 1943.

8 C, L. Hogan, “The elements of non-reciprocal microwave de-
vices,” Proc. TRE, vol. 44, pp. 1345-1368; October, 1956,

of a dc magnetic field causes the permittivity or per-
meability (hereafter referred to as constitutive param-
eters) to become an unsymmetric tensor. Two exam-
ples are gaseous plasma and ferromagnetic materials,
especially low loss, magnetically-saturated ferrites.

Although the usual reciprocity theorem is not valid,
a modified reciprocity theorem* does apply to aniso-
tropic media. In this theorem, media characterized by
transposed tensor constitutive parameters are employed
in addition to the original media. In this paper, the mod-
ified reciprocity theorem forms a basis for the derivation
of orthogonality relationships for modes in waveguides
and cavities containing inhomogeneous, anisotropic
media.

Let us denote the general form of the constitutive
parameters in orthogonal coordinate systems as

€11 €12 €13 |-.U«11 M1z M13

[e] =1 & e e [u] = Lﬁm moa pas | . (1)

~ - a
€13 €23 €33 H13 M23  M33

In this notation the careted symbols, é,; and g, are the
elements in the 7th row and jth column of the constitu-
tive parameter tensors for media characterized by the
transposes of the above tensors. These media shall be
referred to as “transposed media.” In the case of gyro-
tropic media this has physical significance, since revers-

¢ R, F. Harrington and A, T. Villeneuve, “Reciprocity relation-
ships for gyrotropic media,” IRE Traxs. oN MicRowAVE THEORY
anxn TecaNiQuEes, vol. MTT-6, pp 308-310: Julv, 1958.



